
http://www.icce.rug.nl/documents/cplusplus/cplusplus17.html

 Table of Contents

 Previous Chapter

 Next Chapter

Chapter 17: Nested Classes
Classes can be defined inside other classes. Classes that are defined inside other classes are
called nested classes. Nested classes are used in situations where the nested class has a close
conceptual relationship to its surrounding class. For example, with the class string a type
string::iterator is available which provides all characters that are stored in the string. This
string::iterator type could be defined as an object iterator, defined as nested class in the class
string.

A class can be nested in every part of the surrounding class: in the public, protected or
private section. Such a nested class can be considered a member of the surrounding class. The
normal access and rules in classes apply to nested classes. If a class is nested in the public
section of a class, it is visible outside the surrounding class. If it is nested in the protected
section it is visible in subclasses, derived from the surrounding class, if it is nested in the
private section, it is only visible for the members of the surrounding class.

The surrounding class has no special privileges towards the nested class. The nested class has
full control over the accessibility of its members by the surrounding class. For example, consider
the following class definition:

 class Surround
 {
 public:
 class FirstWithin
 {
 int d_variable;

 public:
 FirstWithin();
 int var() const;
 };
 private:
 class SecondWithin
 {
 int d_variable;

http://www.icce.rug.nl/documents/cplusplus/cplusplus17.html
http://www.icce.rug.nl/documents/cplusplus/cplusplus18.html
http://www.icce.rug.nl/documents/cplusplus/cplusplus16.html
http://www.icce.rug.nl/documents/cplusplus/cplusplus.html

 public:
 SecondWithin();
 int var() const;
 };
 };
 inline int Surround::FirstWithin::var() const
 {
 return d_variable;
 }
 inline int Surround::SecondWithin::var() const
 {
 return d_variable;
 }
Here access to the members is defined as follows:

 The class FirstWithin is visible outside and inside Surround. The class FirstWithin
thus has global visibility.

 FirstWithin's constructor and its member function var are also globally visible.

 The data member d_variable is only visible to the members of the class FirstWithin.
Neither the members of Surround nor the members of SecondWithin can directly access
FirstWithin::d_variable.

 The class SecondWithin is only visible inside Surround. The public members of the
class SecondWithin can also be used by the members of the class FirstWithin, as
nested classes can be considered members of their surrounding class.

 SecondWithin's constructor and its member function var also can only be reached by the
members of Surround (and by the members of its nested classes).

 SecondWithin::d_variable is only visible to SecondWithin's members. Neither the
members of Surround nor the members of FirstWithin can access d_variable of the
class SecondWithin directly.

 As always, an object of the class type is required before its members can be called. This
also holds true for nested classes.

To grant the surrounding class access rights to the private members of its nested classes or to
grant nested classes access rights to the private members of the surrounding class, the classes can
be defined as friend classes (see section 17.3).

Nested classes can be considered members of the surrounding class, but members of nested
classes are not members of the surrounding class. So, a member of the class Surround may not
access FirstWithin::var directly. This is understandable considering that a Surround object is
not also a FirstWithin or SecondWithin object. In fact, nested classes are just typenames. It is
not implied that objects of such classes automatically exist in the surrounding class. If a member
of the surrounding class should use a (non-static) member of a nested class then the surrounding

http://www.icce.rug.nl/documents/cplusplus/cplusplus17.html#NESTEDFRIENDS

class must define a nested class object, which can thereupon be used by the members of the
surrounding class to use members of the nested class.

For example, in the following class definition there is a surrounding class Outer and a nested
class Inner. The class Outer contains a member function caller. The member function caller
uses the d_inner object that is composed within Outer to call Inner::infunction:

 class Outer
 {
 public:
 void caller();

 private:
 class Inner
 {
 public:
 void infunction();
 };
 Inner d_inner; // class Inner must be known
 };
 void Outer::caller()
 {
 d_inner.infunction();
 }
Inner::infunction can be called as part of the inline definition of Outer::caller, even though the
definition of the class Inner is yet to be seen by the compiler. On the other hand, the compiler
must have seen the definition of the class Inner before a data member of that class can be
defined.

17.1: Defining nested class members

Member functions of nested classes may be defined as inline functions. Inline member functions
can be defined as if they were defined outside of the class definition. To define the member
function Outer::caller outside of the class Outer, the function's fully qualified name (starting
from the outermost class scope (Outer)) must be provided to the compiler. Inline and in-class
functions can be defined accordingly. They can be defined and they can use any nested class.
Even if the nested class's definition appears later in the outer class's interface.

When (nested) member functions are defined inline, their definitions should be put below their
class interface. Static nested data members are also usually defined outside of their classes. If the
class FirstWithin would have had a static size_t datamember epoch, it could have been
initialized as follows:

 size_t Surround::FirstWithin::epoch = 1970;
Furthermore, multiple scope resolution operators are needed to refer to public static members in
code outside of the surrounding class:
 void showEpoch()
 {
 cout << Surround::FirstWithin::epoch;

 }
Within the class Surround only the FirstWithin:: scope must be used; within the class FirstWithin
there is no need to refer explicitly to the scope.

What about the members of the class SecondWithin? The classes FirstWithin and
SecondWithin are both nested within Surround, and can be considered members of the
surrounding class. Since members of a class may directly refer to each other, members of the
class SecondWithin can refer to (public) members of the class FirstWithin. Consequently,
members of the class SecondWithin could refer to the epoch member of FirstWithin as
FirstWithin::epoch.

17.2: Declaring nested classes

Nested classes may be declared before they are actually defined in a surrounding class. Such
forward declarations are required if a class contains multiple nested classes, and the nested
classes contain pointers, references, parameters or return values to objects of the other nested
classes.

For example, the following class Outer contains two nested classes Inner1 and Inner2. The
class Inner1 contains a pointer to Inner2 objects, and Inner2 contains a pointer to Inner1
objects. Cross references require forward declarations. Forward declarations must be given an
access specification that is identical to the access specification of their definitions. In the
following example the Inner2 forward declaration must be given in a private section, as its
definition is also part of the class Outer's private interface:

 class Outer
 {
 private:
 class Inner2; // forward declaration

 class Inner1
 {
 Inner2 *pi2; // points to Inner2 objects
 };
 class Inner2
 {
 Inner1 *pi1; // points to Inner1 objects
 };
 };

17.3: Accessing private members in nested classes

To grant nested classes access rights to the private members of other nested classes, or to grant a
surrounding class access to the private members of its nested classes the friend keyword must be
used.

Note that no friend declaration is required to grant a nested class access to the private members
of its surrounding class. After all, a nested class is a type defined by its surrounding class and as
such objects of the nested class are members of the outer class and thus can access all the outer
class's members. Here is an example showing this principle. The example won't compile as
members of the class Extern are denied access to Outer's private members, but Outer::Inner's
members can access Outer's private memebrs:

 class Outer
 {
 int d_value;
 static int s_value;

 public:
 Outer()
 :
 d_value(12)
 {}
 class Inner
 {
 public:
 Inner()
 {
 cout << "Outer's static value: " << s_value << '\n';
 }
 Inner(Outer &outer)
 {
 cout << "Outer's value: " << outer.d_value << '\n';
 }
 };
 };
 class Extern // won't compile!
 {
 public:
 Extern(Outer &outer)
 {
 cout << "Outer's value: " << outer.d_value << '\n';
 }

 Extern()
 {
 cout << "Outer's static value: " << Outer::s_value << '\n';
 }
 };

 int Outer::s_value = 123;
 int main()
 {
 Outer outer;
 Outer::Inner in1;
 Outer::Inner in2{ outer };
 }

Now consider the situation where a class Surround has two nested classes FirstWithin and
SecondWithin. Each of the three classes has a static data member int s_variable:

 class Surround
 {
 static int s_variable;
 public:
 class FirstWithin
 {
 static int s_variable;
 public:
 int value();
 };
 int value();
 private:
 class SecondWithin
 {
 static int s_variable;
 public:
 int value();
 };
 };
If the class Surround should be able to access FirstWithin and SecondWithin's private members,
these latter two classes must declare Surround to be their friend. The function Surround::value
can thereupon access the private members of its nested classes. For example (note the friend
declarations in the two nested classes):
 class Surround
 {
 static int s_variable;
 public:
 class FirstWithin
 {
 friend class Surround;
 static int s_variable;
 public:
 int value();
 };
 int value();
 private:
 class SecondWithin
 {
 friend class Surround;
 static int s_variable;
 public:
 int value();
 };
 };
 inline int Surround::FirstWithin::value()
 {
 FirstWithin::s_variable = SecondWithin::s_variable;
 return (s_variable);
 }

Friend declarations may be provided beyond the definition of the entity that is to be considered a
friend. So a class can be declared a friend beyond its definition. In that situation in-class code
may already use the fact that it is going to be declared a friend by the upcoming class. As an
example, consider an in-class implementation of the function Surround::FirstWithin::value. The
required friend declaration can also be inserted after the implementation of the function value:
 class Surround
 {
 public:
 class FirstWithin
 {
 static int s_variable;
 public:
 int value();
 {
 FirstWithin::s_variable = SecondWithin::s_variable;
 return s_variable;
 }
 friend class Surround;
 };
 private:
 class SecondWithin
 {
 friend class Surround;
 static int s_variable;
 };
 };

Note that members named identically in outer and inner classes (e.g., `s_variable') may be
accessed using the proper scope resolution expressions, as illustrated below:

 class Surround
 {
 static int s_variable;
 public:
 class FirstWithin
 {
 friend class Surround;
 static int s_variable; // identically named
 public:
 int value();
 };
 int value();

 private:
 class SecondWithin
 {
 friend class Surround;
 static int s_variable; // identically named
 public:
 int value();
 };
 static void classMember();
 };

 inline int Surround::value()
 { // scope resolution expression
 FirstWithin::s_variable = SecondWithin::s_variable;
 return s_variable;
 }
 inline int Surround::FirstWithin::value()
 {
 Surround::s_variable = 4; // scope resolution expressions
 Surround::classMember();
 return s_variable;
 }
 inline int Surround::SecondWithin::value()
 {
 Surround::s_variable = 40; // scope resolution expression
 return s_variable;
 }

Nested classes aren't automatically each other's friends. Here friend declarations must be
provided to grant one nested classes access to another nested class's private members.

To grant FirstWithin access to SecondWithin's private members, SecondWithin must contain
a friend declaration.

Likewise, the class FirstWithin simply uses friend class SecondWithin to grant
SecondWithin access to FirstWithin's private members. Even though the compiler hasn't seen
SecondWithin yet, a friend declaration is also considered a forward declaration.

Note that SecondWithin's forward declaration cannot be specified inside FirstWithin by using
`class Surround::SecondWithin;', as this would generate an error message like:

`Surround' does not have a nested type named `SecondWithin'

Now assume that in addition to the nested class SecondWithin there also exists an outer-level
class SecondWithin. To declare that class a friend of FirstWithin's declare friend
::SecondWithin inside class FirstWithin. In that case, an outer level class declaration of
FirstWithin must be provided before the compiler encounters the friend ::SecondWithin
declaration.

Here is an example in which all classes have full access to all private members of all involved
classes: , and a outer level FirstWithin has also been declared:

 class SecondWithin;

 class Surround
 {
 // class SecondWithin; not required (but no error either):
 // friend declarations (see below)
 // are also forward declarations

 static int s_variable;

 public:
 class FirstWithin
 {
 friend class Surround;
 friend class SecondWithin;
 friend class ::SecondWithin;

 static int s_variable;
 public:
 int value();
 };
 int value(); // implementation given above
 private:
 class SecondWithin
 {
 friend class Surround;
 friend class FirstWithin;

 static int s_variable;
 public:
 int value();
 };
 };
 inline int Surround::FirstWithin::value()
 {
 Surround::s_variable = SecondWithin::s_variable;
 return s_variable;
 }
 inline int Surround::SecondWithin::value()
 {
 Surround::s_variable = FirstWithin::s_variable;
 return s_variable;
 }

17.4: Nesting enumerations

Enumerations may also be nested in classes. Nesting enumerations is a good way to show the
close connection between the enumeration and its class. Nested enumerations have the same
controlled visibility as other class members. They may be defined in the private, protected or
public sections of classes and are inherited by derived classes. In the class ios we've seen values
like ios::beg and ios::cur. In the current Gnu C++ implementation these values are defined as
values of the seek_dir enumeration:
 class ios: public _ios_fields
 {
 public:
 enum seek_dir
 {
 beg,
 cur,
 end
 };
 };

As an illustration assume that a class DataStructure represents a data structure that may be
traversed in a forward or backward direction. Such a class can define an enumeration Traversal
having the values FORWARD and BACKWARD. Furthermore, a member function setTraversal can
be defined requiring a Traversal type of argument. The class can be defined as follows:
 class DataStructure
 {
 public:
 enum Traversal
 {
 FORWARD,
 BACKWARD
 };
 setTraversal(Traversal mode);
 private:
 Traversal
 d_mode;
 };
Within the class DataStructure the values of the Traversal enumeration can be used directly. For
example:
 void DataStructure::setTraversal(Traversal mode)
 {
 d_mode = mode;
 switch (d_mode)
 {
 FORWARD:
 // ... do something
 break;

 BACKWARD:
 // ... do something else
 break;
 }
 }
Ouside of the class DataStructure the name of the enumeration type is not used to refer to the
values of the enumeration. Here the classname is sufficient. Only if a variable of the enumeration
type is required the name of the enumeration type is needed, as illustrated by the following piece
of code:
 void fun()
 {
 DataStructure::Traversal // enum typename required
 localMode = DataStructure::FORWARD; // enum typename not required

 DataStructure ds;
 // enum typename not required
 ds.setTraversal(DataStructure::BACKWARD);
 }
In the above example the constant DataStructure;:FORWARD was used to specify a value of an
enum defined in the class DataStructure. Instead of DataStructure::FORWARD the construction
ds.FORWARD is also accepted. In my opinion this syntactic liberty is ugly: FORWARD is a
symbolic value that is defined at the class level; it's not a member of ds, which is suggested by
the use of the member selector operator.

Only if DataStructure defines a nested class Nested, in turn defining the enumeration
Traversal, the two class scopes are required. In that case the latter example should have been
coded as follows:

 void fun()
 {
 DataStructure::Nested::Traversal
 localMode = DataStructure::Nested::FORWARD;

 DataStructure ds;

 ds.setTraversal(DataStructure::Nested::BACKWARD);
 }
Here a construction like DataStructure::Nested::Traversal localMode = ds.Nested::FORWARD
could also have been used, although I personally would avoid it, as FORWARD is not a member
of ds but rather a symbol that is defined in DataStructure.

17.4.1: Empty enumerations

Enum types usually define symbolic values. However, this is not required. In section 14.6.1 the
std::bad_cast type was introduced. A bad_cast is thrown by the dynamic_cast<> operator
when a reference to a base class object cannot be cast to a derived class reference. The bad_cast
could be caught as type, irrespective of any value it might represent.

Types may be defined without any associated values. An empty enum can be defined which is an
enum not defining any values. The empty enum's type name may thereupon be used as a
legitimate type in, e.g. a catch clause.

The example shows how an empty enum is defined (often, but not necessarily within a class)
and how it may be thrown (and caught) as exceptions:

 #include <iostream>

 enum EmptyEnum
 {};

 int main()
 try
 {
 throw EmptyEnum();
 }
 catch (EmptyEnum)
 {
 std::cout << "Caught empty enum\n";
 }

17.5: Revisiting virtual constructors

http://www.icce.rug.nl/documents/cplusplus/cplusplus14.html#DYNAMICCAST

In section 14.13 the notion of virtual constructors was introduced. In that section a class Base
was defined as an abstract base class. A class Clonable was defined to manage Base class
pointers in containers like vectors.

As the class Base is a minute class, hardly requiring any implementation, it can very well be
defined as a nested class in Clonable. This emphasizes the close relationship between Clonable
and Base. Nesting Base under Clonable changes

 class Derived: public Base
into:
 class Derived: public Clonable::Base
Apart from defining Base as a nested class and deriving from Clonable::Base rather than from
Base (and providing Base members with the proper Clonable:: prefix to complete their fully
qualified names), no further modifications are required. Here are the modified parts of the
program shown earlier (cf. section 14.13), now using Base nested under Clonable:
// Clonable and nested Base, including their inline members:
 class Clonable
 {
 public:
 class Base;
 private:
 Base *d_bp;
 public:
 class Base
 {
 public:
 virtual ~Base();
 Base *clone() const;
 private:
 virtual Base *newCopy() const = 0;
 };
 Clonable();
 explicit Clonable(Base *base);
 ~Clonable();
 Clonable(Clonable const &other);
 Clonable(Clonable &&tmp);
 Clonable &operator=(Clonable const &other);
 Clonable &operator=(Clonable &&tmp);

 Base &base() const;
 };
 inline Clonable::Base *Clonable::Base::clone() const
 {
 return newCopy();
 }
 inline Clonable::Base &Clonable::base() const
 {
 return *d_bp;
 }

// Derived and its inline member:
 class Derived1: public Clonable::Base
 {

http://www.icce.rug.nl/documents/cplusplus/cplusplus14.html#VIRTCONS
http://www.icce.rug.nl/documents/cplusplus/cplusplus14.html#VIRTCONS

 public:
 ~Derived1();
 private:
 virtual Clonable::Base *newCopy() const;
 };
 inline Clonable::Base *Derived1::newCopy() const
 {
 return new Derived1(*this);
 }

// Members not implemented inline:
 Clonable::Base::~Base()
 {}

 Table of Contents

 Previous Chapter

 Next Chapter

http://www.icce.rug.nl/documents/cplusplus/cplusplus18.html
http://www.icce.rug.nl/documents/cplusplus/cplusplus16.html
http://www.icce.rug.nl/documents/cplusplus/cplusplus.html

	Chapter 17: Nested Classes
	17.1: Defining nested class members
	17.2: Declaring nested classes
	17.3: Accessing private members in nested classes
	17.4: Nesting enumerations
	17.4.1: Empty enumerations

	17.5: Revisiting virtual constructors

